

AutoBayes – Automatic Synthesis of Data Analysis Programs

Bernd Fischer
Automated Software Engineering Group
NASA Ames Research Center
fisch@email.arc.nasa.gov

Data Analysis for AR

(courtesy L. Pedersen)

Typical Data Analysis Application Given:

- instrument data (2D pixel intensities, 3D reconstruction)
- model information / assumptions (number and shape of rocks, overall structure of scenery)

Data Analysis for AR

(courtesy L. Pedersen)

Typical Data Analysis Application Given:

- instrument data (2D pixel intensities, 3D reconstruction)
- model information / assumptions (number and shape of rocks, overall structure of scenery)

Wanted:

• rock (i.e., model-specific program that identifies rock)

Data Analysis for AR

(courtesy L. Pedersen)

Typical Data Analysis ApplicationGiven:

- instrument data (2D pixel intensities, 3D reconstruction)
- model information / assumptions (number and shape of rocks, overall structure of scenery)

Wanted:

 rock (i.e., model-specific program that identifies rock)

Problems:

- high implementation efforts
- high reliability requirements
- model assumptions change

AutoBayes


```
model rock as "L. Pedersen's Rock Finder".
type xyz = \{nat i, j; double x, y, z\}.
const nat nx as "image size (x)".
const nat ny as "image size (y)".
const nat nrocks as "number of rocks".
nat c(1..nx,1..ny) as "rock id"
 where c(\_,\_) <= nrocks.
double mu(0..nrocks), sigma(0..nrocks)
 where 0 < sigma(_).
double mse as "mean square error".
double a, b, c as "plane parameters".
double r(1..nrocks), h(1..nrocks),
      dx(1..nrocks), dy(1..nrocks)
  as 'sphere parameters'.
data nat pix(1..nx,1..ny) as "2D-image".
data xyz pos(1..nx*ny)
                          as "3D-reconstruction".
pix(I,J) \sim gauss(mu(c(I,J)), sigma(c(I,J))).
pos(K)@z \sim c(pos(K)@i,pos(K)@j) cases
  [0->gauss(c*(1-pos(K)@x/a,pos(K)@y/b),mse),
   C->gauss(h(C)**2*
            (1-((pos(K)@x-dx(C))**2 +
                (pos(K)@y-dy(C))**2)/r(C)**2),
            mse)
max pr({pix,pos}|{mu,sigma,a,b,c,r,h,dx,dy,mse})
for {mu, sigma, a, b, c, r, h, dx, dy, mse}.
```

- fully automatic, end-to-end program synthesis system
- high-level, engineering-style notation
 - fully declarative
 - domain-independent
- high leverage: 1:10 1:30
- fast turnaround: ~150 loc/second
- code *and* documentation

Ames Research Center

AutoBayes – System Architecture

- Graphical Models
- Schema library
- Symbolic subsystem
 - rewrite engine: AC, assumptions
 - simplification
 - symbolic differentiation
 - abstract interpretation
 - (polynomial) equation solver
- Procedural intermediate language
- Multiple backends
 - C/C++ based: Octave, Matlab
 - Modula2
 - ⇒ customization (MDS, K9) possible
- Multiple programs
- ~ 50kLoC Prolog

AutoBayes - Schema Library

• Schema ≈ theorem of domain theory (cf. J. Pearl's book)

Schema ≈ generic algorithm (e.g., EM, k-Means)

⇒ generic code fragment + applicability conditions

Automatic Synthesis of Data Analysis

rograms

- fully automatic generation of data analysis programs from high-level specifications (i.e., statistical models)
- generation of software and documentation
- use of optimized data structures
- fully automatic certification of safety properties

Benefits:

- reduced coding/testing efforts, increased confidence
- rapid turnaround of software revisions
- rapid exploration of design space

Principal Investigator:

Bernd Fischer, USRA/RIACS NASA Ames Research Center +1 650 604 2977 fisch@email.arc.nasa.gov

Participating Organizations:

ASE Group, NASA Ames Research Center (Fischer, Schumann, Whittle)
CMU (Gray)
HIIT (Buntine)

Achievements:

- AutoBayes prototype synthesis system (TRL ~4)
 - clustering
 - changepoint detection
 - image processing
- state estimation
- first applications to NASA data sets
- synthesized state-of-the-art algorithm (multinomial PCA, NIPS'99)
- certification of array-bounds safety policy (ITSR-funded)
- approach documented in conference & journal papers